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Oil spills have adverse effects on the environment and economy. Near real time detection and response activities
enable to better manage the required resources at the incident area for clean-up and control operations. Multi-
temporal remote sensing (RS) technologies arewidely used to detect andmonitor oil spills on theOcean surfaces.
However, current techniques using RS data for oil spill detection are time consuming and expensive in terms of
computational cost and related infrastructure. The main focus of this work is oil spill detection from voluminous
multi-temporal LANDSAT-7 imagery using high performance computing technologies such as graphics process-
ing units (GPUs) and Message Passing Interface (MPI) to speed up the detection process and provide rapid re-
sponse. Kepler compute architecture based GPU (Tesla K40) with Compute Unified Device Architecture
(CUDA), which is a parallel programming mechanism for GPU is used in the development of the detection algo-
rithms.Oil spill detection techniques thatwere adapted toGPUbasedprocessing include band-ratio andMorpho-
logical attribute profile (MAP) based on six structural and shape description attributes namely, Gray mean,
standard deviation, elongation, shape complexity, solidity and orientation. Experimental results show the signif-
icant gains in the computational speed of these techniqueswhen implemented on a GPU andMPI. A GPU vs. CPU
comparison shows that the proposed approach achieves a speedup of around 10× for MAP and 14× for band
ratio approaches,which includes the data transfer cost. However, theMPI implementation using 64 cores outper-
forms the GPU, and executes the time intensive task of computing the above said attributes in only 18 min,
whereas a GPU consumes around an hour.

© 2017 Elsevier Inc. All rights reserved.
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1. Introduction

Remotely sensed imagery provides a vast source of information for
monitoring and management activities for natural and man-made di-
sasters such as earthquakes, floods, hurricanes, forest fires, tsunamis,
oil spills etc. Oil spilling is the release of liquid petroleum hydrocarbon
in the ocean or coastal water and has adverse effects on the environ-
ment and economy. Marine and coastal habitats, wildlife species, recre-
ational activities, local industry, and fisheries are some of the sectors
that get affected by oil spills. Frequent occurrence of oil spills across sev-
eral countries clearly indicates the need for rapid oil spill detection and
monitoring approaches. This would greatly help in the implementation
of preventive and control actions, and also facilitate real time emergen-
cy response (Brekke and Solberg, 2005).

Many countries use a combination of spaceborne and airborne sen-
sors for oil spill surveillance. Spaceborne remote sensing (RS) covers
large geographical area; hence the information obtained from it can be
used to generate the first warning, while further detailed analysis can
be done using airborne data (Brekke and Solberg, 2005). Also,
spaceborne sensors are more cost effective than the airborne sensors
(Casciello et al., 2007).

In this work, satellite based remote sensing data is used for the de-
tection of the oil spill in its initial stage as the oil spill thickness is
more, and can be detected in the visible range of Electromagnetic radi-
ation. However, after certain duration, the oil spill forms a thin layer
over the sea surface, and hence it is challenging to detect the oil spill
using the visible wavelength range of space borne sensors.

Some of the state of the art techniques used for oil spill detection in-
clude, Robust Satellite Techniques (RST) (Casciello et al., 2007; Grimaldi
et al., 2010; Grimaldi et al., 2009; Casciello et al., 2011), thermal infrared
based techniques such as Robust Estimator of TIR Anomalies (RETIRA)
using thermal inertia and sea surface temperature (Grimaldi et al.,
2009), collective techniques on satellite images such as region selection,
feature extraction, and oil spill classification (Brekke and Solberg, 2005;
Del Frate et al., 2000).

The trajectory of oil spill is affected greatly by wind flow and ocean
current, slick gets elongated because of wind and starts to drift over
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the sea surface (NOAA, 2014) and oil spill regions form unique shapes;
considering this phenomenon, oil spill regions can be distinguished
using its shape description characteristics. Various oil spill satellite im-
ages shown in Fig. 1 further substantiate this observation, since unique
shapes of the oil spill regions are clearly noticeable.

Solberg et al. (2007) have used various shape features for classifying
oil regions such as slick complexity, slick area, width etc., and contrast-
based features such as slick local contrast, border gradient etc., and ob-
tained 78% classification accuracy for oil spills and 99.4% classification
accuracy for lookalikes. They have added around 37 rules to improve
the accuracy of the classification; these rules resemble attributefiltering
criteria of MAP technique. Alawadi (2012), lists various shape-based
features that can be used for oil spill detection such as slick area, slick pe-
rimeter, perimeter to area ratio, slick complexity, slick width etc.
Topouzelis (2008), discusses various shape characteristics of the oil
spill which helps to discriminate it from its lookalikes such as round-
ness, elongation etc. Stathakis et al. (2006), have extracted around 25
geometrical, physical and texture features for oil spill detection and ob-
served around 86% accuracy using neural network classification.

In this work, after applying the attributes selection process on vari-
ous characteristics of oil spill objects, six most relevant attributes are
considered for MAP based oil spill detection process.

It is worth to mention here that the shape description attributes i.e.
solidity and orientation are proposed for the first time using convex hull
characteristics, to identify the oil spill regions, which plays an important
role to distinguish between lookalike and oil spill regions. A systematic
and suitable MAP approach is used in this work for oil spill detection.

To capture the unique shape of the oil spill, and describe its attri-
butes, a polygon, which encloses the connected components, seems to
be an appropriate choice. Six different attributes are considered for pro-
filing the images. These attributes are, Gray Mean (GM) that observes
the spectral similarity of objects, Standard Deviation (SD) that observes
the homogeneous regions, Slick Complexity (SC) that observes shape
complexity, Elongation (EL) that observes the length of the object, So-
lidity (SL) that observes the solidity of the object and Orientation (OR)
that observes the direction of the object.

These six attributes are discussed in more detail in Section 3.
Since, the current techniques for oil spill detection are time consum-

ing and computationally expensive, hence in thisworkwe develop high
performance computing (HPC) based techniques using Kepler compute
architecture based GPU (Tesla K40) to enable rapid oil spill detection.

However, it can be argued about the need for a GPU-based HPC for
executing a task, which normally takes only a few minutes on the
CPU. This argument has merit when the processing is a one-time activ-
ity. But detection of disaster-affected areas involves continuous multi-
temporal collection, and evaluation of the data for monitoring and con-
trol action,which requires several images to be processed per day. In the
case of the Sichuan earthquake, 1300 images from 22 different sensors
Fig. 1. Oil spill regions captured by satellite imagery, (a) MODIS Terra image of oil spill at gulf o
image on 25th June 2009, (c) 3–4 km long oil slick detected by RADARSAT-2 in deep water of A
2010.
were used for monitoring and evaluating the affected area Lewis
(2009), for the Nepal earthquake, which occurred in April 2015, around
18 sensors were used for analysis (Disasters Charter, 2015); several pre
and post disaster images were used for evaluation. Considering the tre-
mendous amount of data involved in disaster management related ac-
tivities, even if a High performance computing (HPC) approach (e.g.
GPU-based computing) could save around a minute per image, then
for example, for 1000 images it would save around 16 h.

Earlier work on GPU based processing for satellite data illustrates its
suitability in terms of infrastructure requirement, implementation com-
plexity, cost, and speed (Plaza et al., 2011), also other different HPC
technologies such as field-programmable gate array (FPGA), message
passing interface (MPI) are explored for remotely sensed data. Recently,
GPUs are used for hyperspectral unmixing (Bernabe et al., 2013a),
hyperspectral anomaly detection (Bernabe et al., 2013b; Ma et al.,
2014) have designed parallel programming templates to facilitate the
programmer with simplified development of parallel remote sensing
image processing algorithms on GPU.

The core objectives of this work are:

▪ Develop rapid high performance computing (HPC) based oil spill de-
tection approaches

▪ Exploit the inherent parallelism of GPU, and reformulate the algo-
rithms to take full benefit of the high performance computing capa-
bility of GPU. Also, exploring MPI platform for time intensive
attributes computation task, and its performance comparison with
GPU.

▪ Evaluate the computational gains obtained by rapid detection ap-
proaches developed on a GPU with their sequential
implementations on a CPU.

▪ Validation of the oil spill detection results obtained with relevant
geometric and thematic accuracy metrics.

2. Need for high performance computing approaches for rapid oil
spill detection

Currently, spaceborne, airborne, multispectral, hyperspectral with
varying spectral range such as visible bands, short wave infrared
bands, thermal bands etc., have been used for oil spill detection. There
are a variety of algorithms for oil spill detection (Grimaldi et al., 2009;
Casciello et al., 2011; Del Frate et al., 2000; Plaza et al., 2005; Cai et al.,
2007)

• Algorithms that use different spectral properties (such as visible
bands, thermal bands, radio bands etc.)

• Algorithms that take advantage of the spatial properties (such as
shape, texture, and homogeneity etc.) with high spatial resolution,
with varying temporal resolution
f Mexico acquired on 17th May 2010, (b) Possible oil slick captured by RADARSAT-2 SAR
ustralian coast (d) MODIS Aqua image of oil spill at gulf of Mexico acquired on 25th April
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• Algorithms that combine spectral characteristics, spatial characteris-
tics, temporal characteristics of the data to get robust response and
avoid false alarm

The implementation of this wide range of algorithms for oil spill de-
tection in near real time is challenging because of the huge amounts of
data that needs to be processed. Hence, high performance computing
infrastructure is essential to overcome this problem. Further, the inher-
ent characteristics of RS data, and the sequential algorithms in vogue are
not beneficial for the rapid detection of the oil spills due to:

(i) High spatial, spectral, and temporal resolution of the satellite data
Nature of the satellite data is complicated; it includes spatial, spec-

tral and temporal components, for example, Landsat ETM+ sensor pro-
vides 8 bands for spatial resolution 30m (bands 1–5,7), 60m (bands 6),
15 m (band 8-Panchormatic). A single scene of Landsat ETM+ used for
detection of oil spills is around 231 MB. Hence, this grows quickly if the
detection and monitoring is carried out on multi-temporal imagery.

(ii) Computationally expensive algorithms
Oil spill algorithms can be inherently computationally expensive, for

example: techniques involving multiple steps such as region selection,
feature extraction, oil spill classification etc. inwhich each of these com-
ponents are computationally expensive Brekke and Solberg, 2005; Del
Frate et al., 2000). The approach proposed by Del Frate et al. (2000)
have multiple steps in the detection process such as selection of ROI,
computation of physical and geometrical features for extracting specific
characteristics of the object and classification of the object into oil spill.

Some algorithms combine spectral, spatial, physical, temporal char-
acteristics together to get more robust results. For example, Plaza et al.
(2005) have used both spatial and spectral characteristics of
hyperspectral data (CASI and AVIRIS) simultaneously to detect pure
and mixed pixels of oil spill using extended morphological operations.
They have also acknowledged the heavy computation burden while
processing such high dimensional data.

Another approach for oil spill detection was proposed by Cai et al.
(2007). They have calculated the sea surface temperature using four
thermal infrared bands; surface albedo is obtained through weighted
index of spectral reflectance of ASTER data using 6S model. Further, ap-
parent thermal inertia is calculated as a ratio of surface albedo and diur-
nal temperature difference. They have found that the apparent thermal
inertia difference between the oil spill and the surrounding seawater is
higher. Hence, the apparent thermal inertia is more suitable to detect
the oil spill. Also, the method used to derive sea surface temperature
was developed by Xue et al. (2005) which is robust, but very time con-
suming as it involves multiple stages (it takes around 20 min for an
image of size 256 × 256). This high computing time is mentioned as a
limitation for working with large image sizes.

Recently a comparative study of the several classification algorithms
for oil spill detection was carried out using RADARASAT-1 data (Xu
et al., 2014). Classification algorithms such as SVM, ANN, tree-based en-
semble classifiers (bagging, bundling and boosting), Generalized Addi-
tive Model (GAM) and Penalized Linear Discriminant Analysis (PLDA)
were studied for their predictive capability. However, the training
phase in the development of thesemodels is highly computationally ex-
pensive, for example, Support VectorMachines (SVM) includes compu-
tationally intensive tasks during the training phase i.e. it solves a
quadratic programming problem to find separating hyperplanes
which involves computationally expensive operations (Taşkin et al.,
2011).

Further, Del Frate et al. (2000), have used a neural network (NN) to
classify the oil spill features. The training time is very high forNN since it
requires iterative adjustment of the weight coefficients to minimize the
error function equal tomean square difference between the desired and
actual output, in addition, several attempts are required to finalize the
number of units in hidden layers. If back-propagation algorithm is
used in NN, the training time increases significantly. In general, to re-
duce the false alarm rate using machine-learning approaches, a large
training set is required and this can lead to high computational
overhead.

Solberg et al. (2007) have used different types of features such as
shape based features, contrast based features, homogeneity features
etc., for feature extraction of Radarsat and Envisat SAR imagery; further
they have classified it using a combination of statistical classifiers based
on probability principle and rule based approach. They have added 37
rules to overcome false alarm.

(iii) Lack of near instantaneous feedback for end users and developers
Generally, for optimum parameter selection, repetitive execution of

the application with different parameter values is performed to build
classification models, such as selecting cost parameter or penalty pa-
rameter in SVM, which is time intensive process (Gokaraju et al.,
2011). A parameter set is applied on an algorithm and the response is
evaluated. Currently, the time it takes for many of these algorithms to
build the model prohibits their use on large data sets. Hence, instanta-
neous feedback using HPC will be really helpful for developers and
end users to avoid a long waiting time to see the response of how well
a particular parameter set has performed.

(iv) Limited capabilities for immediate response to enable near real
time detection and monitoring

Many coastal countries have oil surveillance systems in place to
manage oil spills (Brekke and Solberg, 2005. However, it is a challenge
to provide near real time response for detection and monitoring due
to large spectral ranges, voluminous data, and complex algorithms.
Therefore, high performance computing is essential to provide near
real time response for oil spill events.

Based on the above, it is evident that HPC can play an important role
in disaster applications. Below is a brief description of the high perfor-
mance GPU Kepler architecture, and CUDA platform used for parallel
implementation - a technology used in this work for HPC.
3. Methodology for oil spill detection

In this work, two oil spill detection techniques i.e. Band ratio
(Taravat and Del Frate, 2012; Srivastava and Singh, 2010), Morphologi-
cal Attribute Profile (MAP) (Mura et al., 2010), which are shape descrip-
tion attributes are considered. In addition, new shape description
attributes specifically for oil spill detection have been proposed in this
work. Fig. 2 shows the proposed methodology.

The algorithms used for parallelization and subsequent
implementations on HPC technologies to achieve high performance
are described below.

3.1. Oil spill index based on spectral characteristics

Imagery of Oil spills is classified using different spectral bands such
as visible, near infrared, thermal infrared, ultraviolet and microwave
bands. Oil has high surface reflectance as compared to water in the vis-
ible range (480–570 nm) of the electromagnetic spectrum. The thermal
infrared (TIR) spectral band (7000–14,000 nm) can be used to identify
contrasting patterns to discriminate oil from water. Information such
as oil thickness and oil to water emulsion ratios can be derived from
oil absorption features in the NIR (700–2500 nm) spectral band
(Leifer et al., 2012). Also, ultraviolet (UV) (250–350 nm) passive sensors
can be used to detect oil spills due to its strong reflectance thanwater in
this region.Microwave (2–8mm) radiometer, which is a passive sensor,
can also be used for oil spill detection and oil thickness measurement
(Fingas and Brown (2014), Jha et al. (2008).

Shorter wavelengths are more sensitive for optical signature of oil
(Taravat and Del Frate, 2012). Oil and water reflectance increases in
the range of 0.475–0.675 μm and have different levels of absorption in
the 0.675–0.800 μm range (Taravat and Del Frate, 2012; Srivastava
and Singh, 2010). Oil spill index can be obtained as a ratio of B4/B2 or
B3/B2 for LANDASAT ETM+. LANDSAT ETM+ band 1 (0.45–0.515



Fig. 2. High performance oil spill detection methodology using spectral and spatial properties.
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μm), band 2 (0.525–0.605 μm)and band 3 (0.63–0.69 μm) is used in this
work. The oil spill signature is calculated as given in Eq. (1).

Oil spill index ¼ B3=B2ð Þ=B1 ð1Þ

The above ratio is normalized using band1 as it also includes the sig-
nature of biogenic materials such as algae.

3.2. Morphological attribute profile (MAP)

Attribute profile characterizes an image by applying different attri-
bute filters (area, standard deviation moment of Inertia, etc.) sequen-
tially, which can model various kind of structural information to
enable the detection of relevant geospatial objects. It provides the flex-
ibility to model different kinds of objects by varying the attribute filter-
ing criteria, or by selecting a subset of relevant attributes and then
applying the filtering criteria.

In order to derive the appropriate profile for geospatial objects, the
three major steps are:

1. Selection of appropriate attributes, which are responsible for model-
ing the structural information.

2. Deciding the sequence of attributes in which the filtering should be
applied.

3. Selection of threshold criterion for each attribute to retrieve a specific
kind of object.

Morphological attribute filters such as area, standard deviation, and
moment of inertia are currently been used to obtained the structural in-
formation from satellite images such as buildings, roads etc. (Mura et al.,
2010; Breen and Jones, 1996; Pesaresi and Benediktsson, 2001). Howev-
er, they have not been fully explored for oil spill detection.

Binary attribute opening is extended in Breen and Jones (1996), for
gray-scale image attribute opening using threshold sets.
For a gray-scale image f, Threshold set Tt(f) is defined as

Tt fð Þ ¼ x∈Ef j f xð Þ≥t ð2Þ

where E is a finite and a discrete set and f(x) is the gray-scale value at
point x of image f.

Gray-scale attribute opening γT of image f at point x is defined as

γT fð Þ xð Þ ¼ max tf jx∈Γx Tt fð Þ½ �g ð3Þ

where Tt(f) is an image obtained by thresholding f at gray level t, Γx is the
connected opening which preserves the regions from the image that
contains point x, and all other regions are eliminated. Gray-scale attri-
bute closing is analogous to Gray-scale attribute opening (Mura et al.,
2010; Breen and Jones, 1996).

Attribute opening profile with increasing threshold criteria
T={Tt | t=0, . . ,n} is defined as

ΠγT fð Þ ¼ ΠγTt

n ���ΠγTt ¼ γTt fð Þ;∀t∈ 0; ::;n½ �g ð4Þ

whereΠγT(f) is an attribute opening profile as a set of all attribute open-
ing images γTt(f), where γTt(f) is a gray-scale attribute opening of image f
at threshold t. If the criterion T is non-increasing in the above equation,
then it is an attribute thinning operation. Filtering attributes such as
standard deviation, moment of inertia can be used to perform attribute
thinning. Attribute closing profile is analogous to opening profile. More
details of this methodology are given in (Mura et al., 2010).

3.2.1. Relevance of the attributes selected for oil spill detection
Attributes used forMAP process are based on the shape of the region

such as elongation, and/or derived from geometric characteristics such
as Slick Complexity, which is derived from area and perimeter of the
polygon enclosing the region. The attributes listed below were selected
as optimal subset after applying an attribute selection process. AWrap-
per based genetic algorithm (Durbha et al., 2010) approach is used for
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the feature subset selection. The attributes, Solidity and Orientation are
proposed for the first time in this work for oil spill detection.

1. Gray mean (GM)
Spectral similarity i.e. the regions having similar spectral reflectance,

can be detected usingGraymean attribute;Meanvalue of each connect-
ed component C is calculated as,

GM ¼ ∑n
i¼1 pi
n

ð5Þ

where, pi is intensity value of eachpixel that belongs toC, andn is the total
number of pixels that belong to C; n is also referred to as the area of C.

Regions belonging to one category will have similar mean gray
value. It may include the components, which are lookalikes such as
cloud and oil spill regions. GM is a non-increasing filtering attribute;
hence, attribute opening is referred to as attribute thinning (Mura
et al., 2010; Breen and Jones, 1996).

2. Standard deviation (SD)
Structural similarity such as homogeneity can be observed by

obtaining Standard Deviation (SD) of the connected components. SD
calculation is benefited because of earlier calculated GM of each con-
nected component,

SD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
∑n

i¼1 pi−GMð Þ2
r

ð6Þ

SD is non-increasing filtering criteria.
3. Slick complexity (SC)
Slick complexity (Solberg et al., 2007) is used to measure the com-

plexity of the oil spill region. It is similar to shape index (Jiao and Liu,
2012). High slick complexity values indicate complex shapes, whereas
low values indicate simpler shapes. Oil spill objects usually have com-
plex geometrical shapes as they are altered continuously by wind or
current, this property helps to distinguish them from their lookalikes.
Slick complexity is calculated as

SC ¼ P2

n
ð7Þ

where, P is the perimeter and n is the area (i.e. total number of pixels) of
the connected component. Area for each connected component is calcu-
lated earlier for GM.

4. Elongation (EL)
Geometric similarity, which is based on the length of the region, can

be observed using elongation attribute. The use of Elongation attribute
is appropriate since, it is one of the well-observed characteristics of
the oil spill as seen in Fig. 1. It is an increasing filtering attribute. Elonga-
tion of the connected component is computed as:

Elongation ¼ Length of Major Axis of Convex hull enclosing C
Length of Minor Axis of Convex hull enclosing C

ð8Þ

5. Solidity (SL)
Solidity is a ratio of the area occupied by the object to the area of its

convex hull, basically it analyses the concavity or convexity of a region.
It is calculated as,

Solidity ¼ Area of C
Area of convex hull enclosing C

ð9Þ

Lookalike regions can be filtered out further using solidity, for exam-
ple, cumulus types of clouds which are cellular (individual) in nature
and have rounded top always have maximum solidity as compared to
oil spill regions.

6. Orientation (OR)
Orientation defines the angle between the x-axis and themajor axis

of the convex hull drawn around the region. Orientation helps to
understand the direction of oil flow influenced by the water current
and the wind.

To compute orientation and major, minor axis of convex hull cover-
ing the region, the technique discussed below (Chaudhuri and Samal,
2007) is applied. Consider the object A with n boundary points (xi, yi),
i = 1, 2, 3… n.

Centroid of A (x;yÞ is calculated as,

x ¼ 1
n

∑
n

i¼1
xi ; y ¼ 1

n
∑
n

i¼1
yi ð10Þ

The direction of a major axis is determined based on the principle
that sum of perpendicular distances of all boundary points is minimum,
and given by,

tan2θ ¼ 2∑n
i¼1 xi−xð Þ yi−yð Þ

∑n
i¼1 xi−xð Þ2− yi−yð Þ2

h i ð11Þ

where θ is the angle between the x axis and a major axis of the ob-
ject. Next, Major axis points are computed using Eq. (12) such that it
returns v = 0, if the point lies on a major axis.

v ¼ yi−yð Þ−tanθ xi−xð Þ ð12Þ

Similarly, minor axis points are computed using,

v ¼ yi−yð Þ−cotθ xi−xð Þ ð13Þ

Out of these 6 attributes, 5 attributes i.e. (SD, EL, SC, SL, OR) are ge-
neric attributes, and selecting threshold criterion for each of them en-
ables to extract various types of similar objects irrespective of the
nature of object (e.g. building, cultivated lands, rivers, roads etc.) (Jiao
and Liu, 2012). Only Graymean is the attribute, which is object specific,
and used to detect a specific type of object.

3.2.2. Connected components extraction
Connected components are identified using 8 connectivity rules.

Further, the above-mentioned six attributes are computed for each con-
nected component. In order to obtain elongation and solidity attributes,
the convex hull for each connected component is computed. Given a
set of points P in the plane, a convex hull of the set P is the smallest con-
vex polygon that contains all the points of P, as illustrated in Fig. 3(a).
The Jarvis's March method (Jarvis, 1973) is used for finding the convex
hull of each connected component. It does not require explicit sorting
since all points are obtained in the anticlockwise direction only. Fig.
3(b) illustrates the working of Jarvis's March algorithm. It starts with
the left most point l of the given set of points, it selects the next point
p such that all other points lies at right of the line (l, p), this process con-
tinues till point l reaches again.

Finally, a threshold criterion considering different attributes is ap-
plied on each connected component to generate various profiles. The
components, which satisfy a certain criteria are merged together to ob-
tain the desired oil spill regions.

The GPU based implementations of the above-mentioned ap-
proaches enables the rapid detection of the affected areas. Those details
are presented in the subsequent sections.

4. Nvidia GPU architecture

Nvidia's Kepler architecture has dramatically increased the compute
capability of the GPU. Tesla K40 GPU provides 2880 cores (Nvidia,
2012). They are organized into 15 streaming multiprocessor (SMX) re-
sponsible for scheduling and dispatching thread blocks and six 64-bit
memory controllers as shown in Fig. 4, where each multiprocessor con-
sists of 192 cores (in green). Each SMX has registers and L1 cache. Each
processor has a fully pipelined integer arithmetic logic unit (ALU) and



Fig. 3. (a) Convex hull from set of points (b) Execution steps of Jarvis's March convex hull algorithm on set of points.
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floating point unit (FPU). Kepler's 15 SMX are positioned around a com-
mon L2 cache. Nvidia's Tesla K40 GPU with 2880 cores is used in this
work.

Some of the features of the Kepler architecture over the earlier gen-
eration architectures such as Fermi, GT200 (for example, Tesla 2075
with 448 cores, Tesla C1060 GPU with 240 cores) are (Nvidia, 2012),

▪ Increased number of cores
▪ Dynamic parallelism
▪ Improved Double precision performance
▪ More global, shared memory
▪ Introduced minimum, maximum, logical AND, OR, XOR atomic
operations

4.1. Compute unified device architecture (CUDA)

CUDA is a programming model that enables general purpose pro-
gramming on GPU. Basic building blocks of CUDA (Kandrot and
Sanders, 2011) are kernel, block, and thread. Fig. 5 depicts the organiza-
tion of these CUDA components.

Kernel is a user defined function, it runs N times in parallel by N dif-
ferent CUDA threads; threads are basic elements of parallel execution in
CUDA. A Block consists of concurrently executing threads. Blocks are or-
ganized into one-dimensional, two-dimensional, or three-dimensional
Fig. 4. Kepler architecture of GPU with 15 streaming multipr
grid of thread blocks. A grid is an array of thread blocks that execute
the same kernel.

4.2. Optimized data transfer using pinned memory on GPU

Christophe et al. (2011) performed NDVI calculations on a GPU and
observed thatmost of the time the GPU capacity is wasted in data trans-
fer as it involvesmultiple bands to transfer fromCPU toGPU. Various so-
lutions available for optimizing data transfer are:

▪ Page locked or pinned memory: cudaMallocHost() or cudaHostAlloc()
function allocates memory on the CPU, it can be directly accessible
from GPU, also data from this memory can be further copied to the
device memory rapidly (Nvidia, 2015).

▪ Zero copy memory: As the name suggests, no data is copied on the
GPU, instead the pointer is set and transferred to GPU to access the
data directly from the host (Nvidia, 2015).

▪ CUDA streaming by means of asynchronous transfer: Different CUDA
streams for data transfer are created for different tasks, and each
stream works asynchronously, thus enabling small transfer over-
head.

▪ Different small blocks of data can be grouped together and can be
sent at once to the device memory; this also reduces the transfer
time.
ocessors (Enlarged Streaming Multiprocessor at right).



Fig. 5. CUDA building blocks: grid consist of multiple blocks, each block consist of multiple
threads.
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▪ GPU Direct technology: GPU direct technology uses special adapters
for direct data transfer, which is generally used for GPU to GPU
data transmission. Pinned/Page locked memory approach is used
in this work to reduce the data transfer cost.

5. HPC implementation of oil spill detection approaches

Two state of the art HPC platforms (i.e. GPU and MPI) are used for
the implementation of the oil spill detection approaches that are de-
scribed in Section 3. MAP process is implemented using GPU; however
one of the most time consuming task of MAP i.e. attribute computation
is also implemented using MPI platform. Nvidia TESLA K40 based on
Kepler architecture and Intel Xeon CPU (E5-2620) is used for processing
the RS images for band ratio and morphological attribute profile opera-
tions. The technical specifications of K40 are given in Table 1.

CUDA with compute capability 3.5 is used for the software develop-
ment. ForMPI based implementation, a cluster of 4 nodes is used, where
Table 1
Nvidia Tesla K40 GPU technical specification.
(Source: http://www.nvidia.in/content/PDF/kepler/Tesla-K40-Active-Board-Spec-BD-
06949-001_v03.pdf)

Number of CUDA cores 2880

Double precision processing performance 1.43 Tflops
Memory capacity 12 GB
Memory clock 3 GHz
Memory interface 384 bits
Memory bandwidth 288 GB/s
Max power consumption 235 W
each node has two Intel(R) Xeon(R) CPU E5-2640 processors, each pro-
cessor has 8 cores, in total of 64 cores. CUDA aware OpenMPI v1.8.1 is
used for the MPI implementation (Forum, 2015).
5.1. GPU implementation of oil spill index

GPU implementation of oil spill index involves transferring three dif-
ferent band images (each of size 7191×8331) on to the devicememory.
However, such a transfer results in a huge overhead on the computa-
tional performance.

Christophe et al. (2011) have experienced such high data transfer
cost while performing Normalized Difference Vegetation Index (NDVI)
calculations as compared to the actual computation cost, whenmultiple
bands are involved in the computation. Although, there is a huge data
transfer cost involved in band ratio type of algorithms, the algorithms
of this kind can take full advantage of the inherent parallelism on a
GPU. Since this work focuses also on optimizing data transfer for effec-
tive utilization of GPU computing power, the approach of page locked/
pinned memory is used for transferring three different bands on to the
device memory. As a result, the transmission time reduces significantly
using the pinned memory.

Pinnedmemory is allocated using the following statements in CUDA,
cudaMallocHost((void**)&d_band1, size*sizeof(double));
or
cudaHostAlloc((void**)&d_band1,size*sizeof(double),cudaHostAlloc

Portable);
Intentionally, the data is considered as of type of double to observe

the data transfer performance shown in Table 2. For faster access the
pinned data is further copied to the device memory. To locate each
pixel in the image, sequential implementation requires two for loops
that corresponds to the number of rows and columns of the image.
Appendix I (A) shows a code snippet for oil spill index calculation on
the GPU.

Whereas, in the GPU implementation, each pixel is located using
thread identifiers, hence, there is no need of for loops, and reduces the
computational complexity of the function from O (n2) to O(c) where c
is some constant time taken for multiple blocks as shown in Appendix
I (A).
5.2. GPU implementation of morphological attribute profile

Six different attributes are considered for implementation on
Landsat ETM+Panchromatic data. In order to compute these attributes,
following variables are calculated for each connected component, and
attributes are derived using the following listed variables,

(a) count_c (Area): Indicates total number of pixels in each compo-
nent. It is inherently sequential operation (i.e. new value of a variable
depends upon an earlier calculated value.)

(b) sum_c: Indicates sum of the intensities of pixels of each connect-
ed component. It is also an inherent sequential operation.

(c) Perimeter_c: Indicates number of points forming the border of
the connected component.

Count_ Convex (Area): Indicates total number of pixels in each con-
vex hull. It is inherently a sequential operation.
Table 2
Geometric errors of MAP results (oil-spill dataset).

MAP results using multilevel attribute filtering
(GM + SD + EL + SL + SC + OR)

OS % US % ED % SH %

Pan-Image 1 11.12 25.66 12.10 14.90
Pan-Image 2 24.04 28.12 38.40 27.34
Pan-Image 3 35.21 14.18 27.466 8.80

http://www.nvidia.in/content/PDF/kepler/Tesla-K40-Active-Board-Spec-BD-06949-001_v03.pdf
http://www.nvidia.in/content/PDF/kepler/Tesla-K40-Active-Board-Spec-BD-06949-001_v03.pdf
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(d) Convex_major_axis: Indicates major axis length of convex hull. It
involves computation of sum, averages (sum_x, sum_y,avg_x, avg_y) of
all x co-ordinates and y-coordinates of the convex hull perimeter and
the angle (ϴ) with respect to x-axis.

(e) Convex_minor_axis: Indicates minor axis length of convex hull.
GM is derived from count_c and sum_c. Further, SD attributes are de-

rived using GM. Slick complexity is computed using perimeter_c and
count_c. Elongation is computed using Convex_major_axis and
Convex_minor_axis. Computation of Convex_major_axis involves identi-
fying ϴ, which is actually the orientation of the convex hull. Solidity is
derived from count_c and count_convex.

In parallel flow on a GPU, the calculation of sum of pixel intensities
(sum_c) and count of the number of pixels (count_c, count_convex)
that belong to each component and a convex hull, are inherently se-
quential operations and cannot be fully parallelized, it is performed
using atomicAdd() function on CUDA platform which executes the se-
quential sum of intensities and pixel count number in each of the con-
nected component/convex hull. CUDA reduction (Harris, 2007) is
another approach that can be used in place of atomicAdd(). Merging of
all the connected components that satisfy the specific threshold criteria
is performed in parallel.
5.2.1. GPU kernels for attribute profile computation
Attribute profiles are implemented using five different kernels, for

identification, labeling, sum and count of connected components, calcu-
lation of squared difference, computation of convex hull, calculation of
major andminor axis, andmerging of the components based on thresh-
old criteria. Implementing GM on GPU involves sequential sum and
count of pixel values for each connected component. This is achieved
using CUDA statements.

atomicAdd(&sum_c[i], *(band1 + x*cols + y));
atomicAdd(&count_c[i], 1);
Array sum_c [i]stores the sum of all the pixels belonging to the con-

nected component i, and count_c[i] stores number of pixels in ith con-
nected component; here each thread adds its data synchronously. The
mean value for each connected component is stored in a constantmem-
ory where GPU has fastest access and is used further to calculate SD.
Shape description attributes that are based on convex hull are imple-
mented in CUDA based on Jarvis's convex hull algorithm is given
below. The steps executed in parallel are also mentioned.

For CPU, the computational complexity is O(P*h) and for GPU it is
O(P)where P is the total number of points in the data set for which con-
vex hull is to be found, and h is the total number of iterations required to
find points of the convex hull; code snippet for the same given in
Appendix I (B). For each component, to identify the points of the first
half of the convex hull, the kernel is invoked by passing flag direct = 1
and the points of the second half of the convex hull are identified by
passing flag direct = 0 to the same kernel.

All the points of connected components from global memory are
stored in the shared memory so that each block should compute the
rightmost point from the data stored in its shared memory, thread 1
of each block is responsible to compute the rightmost point and store
it at thread 0, hence, thread 0 of each block holds the rightmost point
of the respective block, block level thread synchronization is
achieved using __syncthreads(); At the end, using automicMax()
function, the rightmost point is identified from the points held by
thread 0 of the respective blocks. Here, synchronization among mul-
tiple blocks is achieved using __threadfence()). After obtaining con-
vex hull points of connected components, major/minor axis is
computed. It involves avg_x, avg_y, that requires sequential opera-
tions, sum_x and sum_y, which are computed using CUDA reduction
mechanism.

5.3. MPI implementation for attribute computation

Six attributes from each connected component are computed in
parallel usingMPI technology. Root process is responsible for distrib-
uting the input data and uniform number of components at each core
from each node. All cores work in parallel, and computes the attri-
butes from the connected components assigned to it. After complet-
ing the calculation for all the components, each core sends back the
computed values to the root process. It collects the attributes after
finishing with all components, and stores it at an appropriate loca-
tion of the feature matrix, which holds all features of all connected
components together. Implementation is done by calling MPI
routines in C code. MPI calls are invoked to initiate the MPI process
after obtaining connected components from the image. The first pro-
cess, i.e. rank 0 calculates the number of components that can be dis-
tributed to each core, such that all cores should get assigned equal
amount of work, only the last process gets remaining components,
may be lesser than number of components assigned to all other pro-
cesses. The labeled components matrix and original image matrix
(required for GM, SD computation) are broadcasted to all processes,
the following statement demonstrates the broadcast of the labeled
components matrix,

ierr = MPI_Bcast(band_1_conn, no_of_rows*no_of_cols, MPI_INT,0,
MPI_COMM_WORLD);

where band_1_conn is the labeled components matrix,
no_of_rows*no_of_cols is the size of matrix, MPI_INT represents the
data type of the matrix, 0 represents the process or rank broadcasting
the data, MPI_COMM_WORLD is a MPI communicator. MPI_Bcast is ob-
served as more time efficient as compared to MPI_Send when same
data is to be transferred to all cores, also other processes need not
have to explicitly collect the data using MPI_Recv as required by
MPI_Send, data relevant to specific core is transferred using MPI_Send.
Appendix I (C) shows the code snippet where rank 0 distributing the
components across all cores. Root process computes start_comp,
end_comp i.e., start and end component identifiers for all other process-
es so that all processes should gets uniform number of components; it
then sends that data to all other processes. Each process then extracts
the features only for the specific components assigned by the root
process.

6. Experimental results

6.1. Data sets

On 20th April 2010, Gulf of Mexico experienced world's worst acci-
dental oil spill. This event released net liquid oil of 4.1 million barrels
in sea water at Gulf of Mexico. Petroleum hydrocarbons spewed from
leaking well 1.5 km below sea surface (Reddy et al., 2012). Oil spill



Fig. 6. (a) LANDSAT-7 ETM+original imagewith striping due to failure in scan line corrector. LANDSAT-7 ETM+panchromatic (gapfilled) images of oil spill at Gulf ofMexico captured on
(b) 1th May 2010 (16801 × 14441) (Pan-Image1) (c) 10th May 2010 (16681 × 14221) (Pan-Image2) (d) 17th May 2010 (16801 × 14381) (Pan-Image3).

Fig. 7. Oil spill detected using band ratio approach from LANDSAT ETM+ data (with
positive index).
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affected area about 960 km of beaches and wetlands spreading across
five states of United States. Lasting for 87 days, this event had adverse
impact on environment and economy. Marine spices, migratory shore-
birds have had a long term incalculable impact on their survival rate,
breeding process.

Reddy et al. (2012) performed impact (chemical) analysis of
Deepwater Horizon oil spill, regarding oil flow rate, total oil volume
released and trajectories and fates of hydrocarbon components in
marine environment. They observed that gas and oil experienced a
significant residence time in water column causing volatile spices
not to vaporize in atmosphere, hence leading to much water soluble
compound dissolved in to water column as compared to surface oil
spill.

In response to Deepwater horizon oil spill, National Oceanic and At-
mospheric Administration (NOAA) (NOAA, 2015)with other natural re-
sources trustees released a 15 year comprehensive, integrated
environmental ecosystem restoration plan for the Gulf of Mexico
which will cost around $8.8 billion.

Oil spill images of Gulf ofMexico captured inMay 2010 by LANDSAT-
7 ETM+ are obtained from USGS Hazards Data Distribution System
(HDDS) (USGS, 2014). LANDSAT-7 ETM+ Panchromatic images with
15 m spatial resolution from the path 21/ row 40 captured on 1st (de-
noted as Pan-Image1), 10th (Pan-Image 2) and 17th May 2010 (denot-
ed as Pan-Image 3) are used for the spatial analysis. Bands1, 2, 3 of
LANDSAT-7 ETM+ are used for spectral analysis (band-ratio). Original
image consists of striping due to failure in scan line corrector, (one of
the image is shown in Fig. 6(a)), these images are subjected to prepro-
cessing for gap filling (USGS, 2013), the resulted images are shown in
Fig. 6(b) (c) and (d).
6.2. Results

(i) Oil Spill Index
LANDSAT-7 ETM+ Bands1, 2, 3 images (7191 × 8331) are used for

oil spill detection using band ratio, as it has spectral ranges required
for oil spill index calculation.

Fig. 7 shows the oil spill detected by thresholding the image at pos-
itive index values, since the cloud and oil have similar spectral charac-
teristics for the used range, the resulting image shows presence of
cloud along with the oil spill.
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(ii) Morphological Attribute Profiles
Three different LANDSAT ETM+ panchromatic images containing

oil spill regions of size, 16801 × 14411 captured on 1st May 2010,
16681 × 14,221 (Pan-Image 1), captured on 10th May 2010 (Pan-
Image 2), and 16,801 × 14,381 captured on 17th May 2010 (Pan-
Image 3) are used for experimentation. Profiles with 6 different attri-
butes (GM, SD, EL, SL, SC, OR) are calculated for each connected compo-
nent of each image usingMAP. Attribute filtering is applied in hierarchy
to eliminate the undesired or lookalike components from the data. Oil
Fig. 8.MAPof oil spill usingmultilevel attributefiltering onmulti-temporal Panchromatic Image
+ SD+EL (c) GM+SD+EL+SL (d) GM+SD+EL+SL+SC (e) GM+SD+EL+SL+SC
XSL b 0.5, XSC N 2,−90 b XOR b−10} Pan-Image 2: {50 b XGM b 120, 1.8 b XSDb 6.0, XEL N 1.5, XSL b

XSC N 2,20 b XOR b60}.
spill signatures are obtained at below given thresholds of each attribute
for each image,

Pan-Image 1: {50 b XGM b 100, 1.8 b XSD b 6.0, XEL N 1.5, XSL b 0.5, XSC

N 2,−90 b XOR b −10}
Pan-Image 2: {50 b XGM b 120, 1.8 b XSD b 6.0, XEL N 1.5, XSL b 0.5, XSC

N 2, 50 b XOR b 80}
Pan-Image 3: {50 b XGM b 130, 1.8 b XSD b 6.0, XEL N 1.5, XSL b 0.5, XSC

N 2, 20 b XOR b 60}where X represents all the components, which sat-
isfies the given threshold criteria with respect to a subscripted attribute.
s (each column represents: Pan-Image1, Pan-Image2, Pan-Image3) (a) GMfiltering (b)GM
+ORwith the following threshold, Pan-Image 1: {50 b XGM b 100, 1.8 b XSD b 6.0, XEL N 1.5,
0.5, XSC N 2,50 b XOR b 80} Pan-Image 3: {50 b XGM b 130, 1.8 b XSD b 6.0, XEL N 1.5, XSL b 0.5,
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Filtering is applied in the same sequence asmentioned above. In Solberg
et al. (2007), 37 different rules are defined for improving the accuracy of
classification, these rules resemble attribute filtering criteria of MAP
technique. Other than GM and OR attribute, all attributes are quite ge-
neric and have same threshold levels across all the images; whereas
the changes in GM and OR attributes represent the temporal changes
on oil spill components; change in GM indicates increase in intensity
along with time and change in OR indicates the influence of wind on
oil spill regions along with time. Agreement on threshold values of
some of the attributeswill actually be useful to derivemore generic pro-
files of distinct categories of objects such as roads, rivers, buildings,
ponds etc., whereas inclusion of intensity and direction related attri-
butes gives more specific object profiles.

Fig. 8 represents different profiles obtained after applying various at-
tribute filtering on oil spill images captured at different dates. Fig. 8(a) is
a profile generated using only GM attribute with the given threshold
criteria for each image. Fig. 8(b) till (e) represents the multilevel attri-
bute filtering that eliminates not only distinct non oil-spill components,
but also eliminates lookalikes from each of the image. GM eliminates all
the objects, which are distinct in nature in terms of their brightness. Re-
sult of GM includes oil spill regions along with its lookalike; further fil-
tering attempts to eliminate the look alike as well. Oil spill regions are
observed to have SD above 1.8, after imposing this filter, many small
(in terms of area) connected components gets eliminated automatically,
as they usually have very less SD (below 1). EL attribute filtering further
restricts the components, which are not elongated; Fig. 8(b) shows the
components after SD and EL filtering. All the images under experimen-
tation contain cumulus clouds, which usually have high solidity as
compared to oil spill regions; Fig. 8(c) shows the components after SL
filtering. Oil spill signatures are observed to be of complex shape;
Fig. 9.MAP of oil spill using multilevel attribute filtering (a) highlighted cloud objects eliminate
(c) highlighted Oil spill objects eliminated due to orientation criteria.
hence SC filtering is applied to eliminate the lookalike components,
which are simpler in shape, results of SC are presented in Fig. 8(d).

Since oil spill regions are greatly influenced by wind and current
flow, its direction is one of the characteristics that will identify the oil
spill regions uniquely. Fig. 8(e) shows oil spill regions based on its orien-
tation property. After applying multilevel filtering at different thresh-
olds, it is observed that, most of the oil spill components pass through
all filtering criteria.

Fig. 9(a) highlights prominent cloud components, which are elimi-
nated due to more solidity after applying SL threshold criteria. At the
final level of filtering, almost all lookalikes are eliminated due to the ori-
entation criterion; Fig. 9(b) shows such components from Pan-image 2.

Some of the oil-spill regions highlighted in Fig. 9(c) are also elimi-
nated due to unfulfilled orientation constraint. However, eliminating
many other non oil-spill components from the same scene increases
the recall.
6.3. Result validation

MAP technique used in this work for oil spill detection is mainly
based on geometric characteristics of the data. Thematic accuracy does
not consider geometrical quality of the region on the scene; hence, the
correctness of the geometry of the regions obtained after classification
is not verified. For low ormedium resolution images, it is difficult to de-
scribe the geometry of the region, but for high resolution images (e.g.
Pan-Image1, Pan-Image2, Pan-Image3 used in this work) it is beneficial
to validate geometric accuracy along with thematic accuracy. Hence,
correctness of the methodology is measured using both, thematic and
geometric accuracy measures.
d due to more solidity (b) highlighted cloud objects eliminated due to orientation criteria



Fig. 10. (a) Reference objects obtained using segmentation technique (b) corresponding
Oil spill objects obtained after applying MAP multilevel attribute filtering.

Table 3
Optimized data transfer (pinned memory vs. unpinned memory).

Image size
(double data type)

Unpinned memory
transfer time (ms)

Pinned memory transfer
time (ms)

2048 × 2048 18.61 3.18
4096 × 4096 72.77 12.71
8192 × 8192 281.96 50.87
12,288 × 12,288 532.47 114.47
18,432 × 18,432 1000 247.44
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6.3.1. Geometric accuracy
Persello and Bruzzone (2010), have proposed a novel protocol for

accuracy assessment as the thematic accuracy is not sufficient for geo-
metrical properties of high resolution classification. They have proposed
geometric error indices which computes the correctness while
extracting the geometry, shape of the objects (buildings, roads, oil spills,
etc.) considered for investigation. Computation of these error indices in-
cludes a set of reference objects, R= {R1, R2…..Rn} of specific class of in-
terest that defines the exact shape, and geometry. Another set of objects
M = {M1, M2, M3, ……..Mm} is obtained through experimental result
using various other algorithms. For a pair of (Ri, Mi) where Mi corre-
sponds to Ri, following error indices can be calculated:

▪ Over segmentation (OS)

It calculates a ratio of overlapping area of two objects and the area of
reference object.

OS Ri;Mið Þ ¼ 1−
jRi∩Mij

Ri
ð14Þ

▪ Under segmentation (US)

It calculates a ratio of overlapping area of two objects and the area of
object obtained through experiment, given in Eq. (15).

US Ri;Mið Þ ¼ 1−
jRi∩Mij

Mi
ð15Þ

▪ Edge location error (ED)

In edge location error, given in Eq. (16), e(Ri) denotes the pixels that
form a border of reference objects, and e(Mi) denotes the pixels that
form a border of classified object.

ED Ri;Mið Þ ¼ 1−je Rið Þ∩e Mið Þj
je Rið Þj ð16Þ

▪ Shape error (SH)

Shape error is calculated as absolute value of the differences of the
specific shape factor such as roundness, compactness etc.

SHi ¼ sf Rið Þ−sf Mið Þj j ð17Þ

OS, US, ED index will vary in the range of 0 to 1, whereas SH index
range depends upon the range of values of the shape factor.

Mura D. et al. (2010) have used this validation approach for validat-
ing the results of MAP on VHR images for classification of road, build-
ings, vegetation etc.

In this work, four different geometric error indices are used for eval-
uation, namely, over segmentation (OS), under segmentation (US),
Edge location (ED), and shape error (SH) (Persello and Bruzzone,
2010). Oil spill reference objects are obtained by performing segmenta-
tion using Sobel operation on the image data. Further, manual verifica-
tion of segments (based on published data) is done to identify the exact
oil spill segments. Fig. 10(a) presents the oil spill reference objects and
Fig. 10(b) presents the oil spill objects identified using MAP multilevel
attribute filtering.

All oil spill objects obtained as a result of MAP multilevel attribute
filtering criteria are evaluated against corresponding reference objects
by computing OS, US, ED, SH geometric error indices as described
above. Table 2 shows the validation results obtained by OS, US, ED, SH
measures; figures in this table are average percentile errors calculated
considering all resulted objects of MAP multilevel attribute filtering.
6.3.2. Thematic accuracy
Thematic accuracy is measured by subjecting the component's attri-

bute data as features to SVM classification, LIBSVM (Chang and Lin,
2011) classifier is used. 195 features are considered for classification
with almost equal number of features for oil spill and non-oil spill clas-
ses. RBF kernel is used for trainingwith default gamma i.e. (1/number of
features), and cost with 10 fold cross validation. SVM provides 97.95%
accuracy for oil spill sample dataset.



Fig. 11. Performance evaluation of oil spill index calculation on GPU and CPU.

Fig. 12. Visual profiler data for kernel gpundci() (Right side block), highlighted kernel in time line (details of gpundci() can be seen in right side block).
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6.4. GPU performance

Transfer cost of pinnedmemory to device is very less, approximately
5 times less than unpinnedmemory. Table 3 shows the performance for
both pinned and unpinned memory data transfer on GPU.

For oil spill index, Fig. 11 shows the performance improvement of
this computation on GPU as compared to CPU.
Fig. 13. Performance evaluation for MAP process on CPU and GPU.
GPU implementation of oil spill index is around 14 times faster than
CPU implementationwith data transferring (i.e. 3 full scene images cor-
responding to 3 bands) and around 800 times faster over CPU if only the
kernel execution is considered. It is an embarrassingly parallel task. Fig.
12 shows the time-line results obtained using Nvidia visual profiler for
oil spill index (gpundci()) kernels.
Fig. 14. MPI Performance by varying number of cores for attribute computation for
different number of components.
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In attribute profiles, speedup is also observed for the kernels
calculating sequential sum, count and squared difference re-
quired for all the attributes on GPU. Fig. 13 shows the perfor-
mance evaluation for entire MAP process ON GPU over CPU. In
spite of involving lots of sequential tasks, for the entire MAP pro-
cess, considering all attributes, GPU speed up is around 10× over
CPU.
6.5. MPI performance

Attributes computation for each component is also implement-
ed using the OpenMPI platform. Execution time is measured by
varying the number of cores as 8, 16, 32, and 64. Fig. 14 presents
the performance of features extraction process by varying number
of cores against number of connected components. Execution
using all 64 cores performs 5× faster as compared to execution on
8 cores.

Only attribute computation process on GPU takes almost an hour
whereas MPI implementation on 64 cores takes only 18 min.

As compared to 64 cores of CPU, the GPU performance is lower
because of lots of inherently sequential operations involved in the
process such as computation of variance, convex hull based attri-
butes, in this case, at block level, the computation of rightmost
point is done sequentially only. Further, synchronization between
all threads inside a block and across a block introduces a delay.
Though these tasks are performed in parallel using atomic or reduc-
tion operations and can gain speed over a single core execution, but
multiple cores (64 in this case) intended for sequential processing
outperforms GPU in such a kind of operations.
7. Conclusions

Oil spill signatures are obtained using spectral and spatial techniques
on LANDSAT ETM+ data. Spatial analysis approach, called MAP is ap-
plied on oil spill data using GM, SD, EL, SL, SC, OR attributes. For each at-
tribute threshold criteria is identified after manual observation.
Multilevel filtering is applied with these attribute threshold criteria to
obtain the oil spill signature. Two different validation approaches, geo-
metric validation and thematic validation are used tomeasure the accu-
racy of MAP results. Geometric accuracy is calculated using OS, US, ED,
SH error measures which give 23.46, 22.65, 25.98, and 17.01% average
errors respectively for all images. Thematic accuracy is measured by
subjecting all attributes of 195 components as features for SVM classifi-
cationwith almost equal number of features for oil spill and non-oil spill
classes; with 10 fold cross validation, 97.95% accuracy is observed.

Different oil spill detection techniques are implemented on CPU and
GPU. It is observed that GPU execution time is considerably lower than
CPU execution time for these techniques and is inversely proportional to
the data size. Amount of speedup achieved is around 14 X for band-ratio
approach and 10× for entire MAP process over CPU. Data transfer is op-
timized using pinned memory as it is observed that optimized data
transfer benefits percentage utilization of GPU. Pinnedmemory transfer
is around 5× faster than unpinnedmemory. Most time intensive task of
MAP i.e. attribute computation is also implemented on MPI using 64
cores and observed significant speedup.

Further optimization can also be done using concurrent execution of
CUDA kernels using CUDA streaming; further scope of this work in-
cludes implementation of the MAP using hybrid parallelism with
CUDA aware MPI that uses heterogonous platform i.e. GPU and MPI to
exploit multilevel parallelism.
Appendix I (A)

Oil spill index calculation snippet in CUDA C.
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Appendix I (B)

CUDA Code snippet for convex hull implementation.
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Appendix I (C)

C MPI code snippet for feature extraction process from each connected components.
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